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Introduction

An ideal observer is ideal in the sense that it achieves
statistically optimal performance for a specified task.
It makes the best decisions or estimates given uncer-
tain sensory information and prior knowledge. What
is best is specified in terms of costs and benefits. Ideal
observer models can be used to study different types
of real test observers, such as in the psychophysical
analysis of the input/output behavior of humans
and spike-train analysis of information carried by
single neurons. If human perceptual performance
approaches that of an ideal observer, this can, in
principle, rule out a large class of candidate neural
mechanisms that are suboptimal relative to the ideal.
Although the ideal observer concept can be traced to
earlier work, the modern notion of an ideal observer
was developed in the 1950s by Peterson, Birdsall,
Fox, Tanner, Swets, and others in the context of a
general theory of signal detectability. The theory
and its initial applications to human auditory and
then visual sensitivity are described in a classic 1966
book by Green and Swets. In the late 1970s, Horace
Barlow applied ideal observer analysis to higher-level
perceptual tasks, such as the perception of symmetric
patterns. By the 1990s, comparisons of human and
ideal performance were extended to an increasingly
wider set of problems, including object and motion
perception, perceptual organization, reading, and
motor control. Ideal observer analysis has shown,
for example, that the way in which human observers
integrate depth or motion information takes into
account uncertainty in the input image cues, as we
might expect from an ideal observer doing the
same task.

Defining the Ideal Observer

The key ingredients in defining an ideal observer are
(1) the generative model; (2) the task requirements,
including a measure of performance; and (3) an
observer model that specifies the optimal action rule
for the given task requirement. The ideal observer
can be defined in terms of four classes of random
variables on a directed graph (i.e., one with arrows)
that represents how the variables influence one

another (see Figure 1). These variables represent
states of the world s, observations (data) x that result,
actions a (e.g., decision or estimate) on the data, and
the losses (costs) L(a, s) of action a, given the true
state s. The spaces can be discrete or continuous. For
example, a state of the world could mean one of two
positions of a light switch or the distance of an object.
An action may be only indirectly related to the state,
for example, when a person throws a ball, the speed
of release of the ball aimed at a distant target versus
an estimate of the state itself (distance). We now go
over the elements in greater detail.

The Generative Model

The generative model specifies how the states of
the world s determine the observed data x, that is,
sensory input (e.g., the pattern of image intensities).
The state space can be discrete or continuous. In
general, states and data are multidimensional,
s¼ (s1, s2, s3, . . .) and x¼ (x1, x2, x3, . . .), and the
relationship between states and data can have com-
plex dependencies (a simplified example is shown in
Figure 1(b)). The generative model consists of the
prior probability of the state s, p(S¼ s) and the prob-
ability of the observation x given s, pðX ¼ xjsÞ. The
prior probability can be simple, representing the
probability of a hypothesis with just two values,
such as a light switch being set to high S¼ sH rather
than low S¼ sL. But the prior probability on s can
also be used to model complex pattern regularities
that take into account covariation among elements
of s, such as the probability of a surface tending to
have smoothly varying, rather than rapidly changing,
depths. In this case, validating the model for the
prior from real-world data can be a significant prob-
lem by itself; however, in the lab, an experimenter
can specify the prior. The probability of an observa-
tion x given s describes how the signal s is encrypted
in the data and is the likelihood of the hypothesis
(the state s) given the data. The description could
be as simple as x¼ sþ n, where x is light intensity,
s is the average level of one of two fixed light
intensities, and n is a sample of Gaussian noise.
Then pðX ¼ xjsÞ ¼ pðx% sÞ. Or pðX ¼ xjsÞ could be
derived from a more complicated function
x ¼ !ðs; nÞ, where x is a vector representing an
image, and f is a function that describes how a
shape s together with a confounding variable n, such
as viewpoint (or slant angle in the next example),
determines the image observation. In the context of
a psychophysical experiment, the generative model
can be thought of as a probabilistic description of
how the stimuli are generated.
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The Task Requirements

The task requirements are twofold: (1) decide what is
to be done with the data, for example, detect the
presence or absence of the signal (e.g., high vs. low
contrast? or animal present or not?), identify the
signal (e.g., which letter, A, B, or C?), and estimate a
continuous value (e.g., what is the depth of the
object?); and (2) determine the value of achieving or
not achieving the goal. Not all elements of the state
variable, s¼ (s1, s2, s3, . . .), are equally important and
need to be determined accurately. In classic signal
detection theory, state variables are divided into two
types – the relevant variables to be inferred accurately
(signals) and those to be discounted (noise) – with
associated losses for right and wrong answers. Gener-
ally, the value of accuracy can be expressed in terms of
a loss function (or, alternatively, a gain function, equal
to one minus the loss function). For example, different
degrees of relevance can be placed on the state vari-
ables by specifying a loss function L(a1, a2; s1, s2),
which puts a cost on choosing actions a1, a2
when the true states are s1 and s2. If the action is an
estimate of s, a ¼ ŝ, loss may be expressed in terms
of differences, Lðŝ% sÞ.

Optimal Action or Decision Rule

Of the many possible observer models, the ideal
observer is defined as one that uses an action rule
a(x) that minimizes the risk for the task. The expected
risk is defined as the loss averaged over both state and
observation variables: R(a|x)¼

P
s, x L(s, a(x))p(s, x).

For a given observation x, the decision rule is to
choose action a so as to minimize R(a|x)¼

P
s, x L

(s, a(x))p(s|x). Often the action space has a simple
relationship with the signal state space. For example,
in a detection or discrimination task, the state space is
discrete and binary, and the action is to decide
whether the signal was sent or not (answer yes or no
to questions such as ‘Is Thomas there?’ or ‘Is Thomas
bigger than Simon?’). For identification, the state space
is discrete with multiple values (S¼ {Thomas, Simon,
Hermann, Jacob}), and the actions are decisions based
on x (‘Is it Thomas? Simon? Hermann? Jacob?’).
For estimation, the action is an estimate of the state
variable, a ¼ ŝ from observation x (e.g., ‘How tall is
she?’). If the loss is uniformly high for all wrong deci-
sions and low for the correct decision, then the optimal
action is to pick the most probable state s given the
data x. This is the maximum a posteriori (MAP)
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Figure 1 State and observation spaces in an ideal observer model: (a) components of the model; (b) an example in which state
variables S1 and S2 both influence observation X1 but only S2 directly influences X2. In (a), the nodes represent random variables, and the
arrows indicate how they influence one another. The arrows in the graph (formally, a directed acyclic graph) can be interpreted as
describing the dependencies among variables. The graph structure determines how to factor the joint distribution for the task,
pðs; x ; l ;aÞ ¼ pðl ja; sÞpðajxÞpðx jsÞpðsÞ. From this, we can formalize the problem of estimating components, such as the probability of
a loss value p(L¼ l) (i.e., probability of error L¼1) and other performance measures, such as the hit rate pðL ¼ 0jsHÞ, or false positive rate
pðL ¼ 0jsLÞ for signal state sH and noise state sL. As shown in (b), the state and observation spaces can have complex dependencies.
Solid lines indicate the generative model, and the dashed lines the directions of (inverse) inference for two tasks. Suppose the goal is to
estimateS2; then both observations determine the optimal estimate (blue dashed lines). This is an example of cue integration, in which the
two observations are conditionally independent of S2. If the goal is to estimate S1, both observations again determine the estimate, but X2

indirectly affects beliefs about S1 through S2 (red dashed lines). This is an example of explaining away. The graph structure is equivalent
to the factorization pðs1; s2; x1; x2Þ ¼ pðx1js1; s2Þpðx2js2Þpðs2Þpðs1Þ.

90 Ideal Observer Theory 

Encyclopedia of Neuroscience (2009), vol. 5, pp. 89-95 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Author's personal copy



observer: aðxÞ ¼ argmaxspðsjxÞ. This rule yields the
smallest average error. If the loss is the squared error
between the state and estimated state variables,
then the optimal action is to choose the mean of the
posterior. Next, we illustrate task requirements with
examples for detection and estimation tasks.

Applications of Ideal Observer Theory

We can distinguish two types of applications of ideal
observer theory. For the purposes of this article,
we refer to the first as ideal observer analysis; in this
application, the test observer (humans or neural sys-
tem) competes against the ideal observer in the
same well-defined laboratory task. Because the exper-
imenter controls the conditions for the stimuli and
task, no observer can do better (on average) for the
specified task. In this case, the performance of an
ideal observer can be thought of as a benchmark
against which to measure human performance. The
emphasis is on departures from ideal performance,
which provides clues to the underlying, generally
subideal mechanisms. Ideal observer analysis is a use-
ful addition to the experimenter’s toolbox alongside
linear and nonlinear systems analysis. Ideal observer
analysis has been used to show that humans perform
some tasks with strikingly high efficiency relative
to the ideal observer but perform others quite poorly.
One of the historic success stories was to show
that the human ability to discriminate light intensity
under nighttime viewing conditions can be extremely
high. Following on the work of Hecht, Schlaer, and
Pirenne in the 1940s, Horace Barlow showed in
the early 1960s that human quantum efficiencies
were sufficiently high as to rule out any explanation
that required the retinal transduction of more than
a few photons.
The second application of ideal observer theory

is as an approximate theory or model of performance.
The primary distinction between the two applica-
tions is that the second typically makes simplifying
assumptions about the generative model (see the sec-
tion titled ‘Estimation’), including the nature of the
input representation (e.g., the ideal observer may
have geometrical features as input, whereas the
human observer receives image intensities as input,
from which geometrical information is derived) or
how the data are caused by the states of the world
(e.g., Gaussian noise is added, whereas the actual
noise may be non-Gaussian). In other words, the
ideal observer is optimal with respect to a generative
model that may differ in detail from the true genera-
tive model, either as defined in a particular laboratory
study or in a real-world task. The primary reason for
these simplifying assumptions is practical – the true

ideal observer is too hard to calculate. Even though
humans are in general suboptimal, an ideal observer
model may nonetheless go a long way in explaining
the observed behavior. In this second type of applica-
tion, ideal observer theories are equivalent to Bayesian
theories of perceptual performance. As a modeling
tool, a general advantage of the Bayesian ideal obser-
ver approach is that it avoids a commitment to untest-
able mechanistic details, such as a particular neural
architecture, while still providing quantitative predic-
tions of behavior (Table 1).

Examples of Ideal Observer Analysis

Signal Detection

Figure 2 illustrates a classic task in signal detection
theory in which a switch is set to high or low and the
observer has to guess the setting based on an observa-
tion, in this case a measurement of light intensity.

The generative model The switch setting is the state
variable. If the two switch settings are equally likely,
independent of the data, then the prior is constant
and equal to one-half, pðS ¼ sÞ ¼ 1=2. The second
part of the generative model, the likelihood, specifies
how the observations depend on the state. Suppose
that when the switch is set to high the average light
intensity is higher than when the switch is set to low.
However, because of trial-to-trial fluctuations (noise),
the measured or observed light intensity varies. So
sometimes the measured light intensity is higher for
the low setting than for the high switch setting. Note
that in ideal observer analysis, we may be able to test
the validity of the generative model, apart from ques-
tions of optimal inference. Thus, for example, the

Table 1 Ideal observer model equations

Terms Equations

Conditioning pðx jyÞ ¼ pðx ; yÞ=pðyÞ
Marginalization pðxÞ ¼

Ð
pðx ; yÞdy

Bayes’s rule pðsjxÞ ¼ pðx jsÞpðsÞ=pðxÞ
Signal-to-noise ratio

for equal variance
Gaussian case

d 0
snr ¼ ðms % mnÞ=s

Relation of z and P zðPÞ : p ¼ ð1=
ffiffiffiffiffiffi
2p

p
Þ
Ð1
x e%x2=2dx

Sensitivity from false
alarm and hit rates

d 0
perf ¼ zðPFAÞ % zðPHÞ

ROC in terms of z
values for unequal
variance case

zðPH Þ ¼ ðsn=ssÞzðPFAÞ % ½ðms % mnÞ=ss '

d 0 for 2AFC from
proportion correct

d 0
2afc ¼ %

ffiffiffi
2

p
zðPcÞ

Efficiency E ¼ ðd 0
snrI

=d 0
snrT

Þ2

2AFC, two-alternative forced-choice task; ROC, receiver operating
characteristic; snr, signal-to-notice ratio.
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light switch model assumes additive Gaussian noise
(although at low intensities at which fluctuations in
photon emission and absorption may dominate; a
Poisson model is a better choice). Figure 2(c) (top)
shows the Gaussian distributions of observations
under the two possible state conditions. The noise is
additive because the high switch setting produces the
same distribution as that of the lower setting, except
that the mean is shifted by an added amount. The
standard deviation remains the same.

The task Suppose that given an observation the
observer has to decide whether it was due to a high
or a low switch setting. Further, suppose that the task
requires that the probability of error p(L¼ 1) be as
small as possible. Loss is represented by 1% ds;̂s (the
Kronecker delta function, ds;̂s ¼ 1 if s ¼ ŝ, and
ds;̂s ¼ 0 otherwise). Another common task in psycho-
physics is the two-alternative, forced-choice task
(2AFC). The test observer (e.g., a human subject)
and ideal observer share the same state, observation,
and action space, as well as loss function (scoring
system). In general, they differ in their mappings of
observations to actions, that is, their decision rules.

The optimal decision rule Intuitively, we guess that
the best strategy might be to choose sH if
pðxjsHÞ > pðxjsLÞ, and, in fact, this is the optimal
rule for the constant prior case if we want to have
the smallest error rate. In our example, this rule is
equivalent to choosing sH if x> xc, where xc is the
point where the two curves in Figure 2(c) (top) cross
one another. However, the general rule for minimiz-
ing error is the MAP rule, which takes into account
the prior probability and picks the state with the
higher posterior probability; that is, it chooses sH if
pðsHjxÞ > pðsLjxÞ. The posterior pðsjxÞ is determined
by the prior and likelihood through Bayes’s rule:
pðsjxÞ ¼ pðxjsÞpðsÞ=pðxÞ. If, for example, the prior
probability of the switch setting high is bigger than
the probability of low, this is equivalent to moving the
criterion to xm (i.e., choosing sH if x> xm; compare
the upper and lower panels of Figure 2(c)). But there
are other rules depending on the loss function we
choose. The loss function is a 2( 2 payoff matrix
with loss values for hit (true positive), false alarm
(false positive), correct rejection (true negative), and
miss (false negative). We can assign distinct losses to
each of these outcomes, in which, for example, false

X=x
S = sL

S = sH Light source

State: high or low
switch Observation

a

p(x |S = sH)

P
ro

ba
bi

lit
y

de
ns

ity
P

os
te

rio
r

pr
ob

ab
ili

ty

x

mL

s

mH

xm

xc

p(x |S = sL)

p(x |S = sL|x)

p(x |S = sH|x)

c

b

Signal state space
S = s

Observation
x=mS+n

Noise
N=n

S N

X

Figure 2 Example of a simple ideal observer for a binary task, signal detection: (a) schematic of the physical model in which a light
source produces an observation x, of light intensity; (b) graph showing causal dependencies corresponding to factorization in terms of the
components of the generative model: pðx ; s; nÞ ¼ pðx js;nÞpðsÞpðnÞ (the direction of the inference for the detection task is shown by
the dashed arrow); (c) Gaussian probability densities of the observation under the two hypotheses (switch states), also known as the
likelihood functions corresponding to different means, mL, mH (top) and graphs of the posterior probabilities (bottom). In (c, top),
the standard deviations are the same, s. In (c, bottom), when the switch probabilities are not equal, choosing the highest likelihood no
longer produces the lower error rate. The ideal observer guesses the state with highest posterior probability.
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alarms are more or less costly. In general, this results
in a different rule r based on minimizing the risk –
choose sH if rðsHjxÞ > rðsLjxÞ. Standard results in sig-
nal detection theory show that for this problem the
optimal rule is equivalent to: choose sH if x> xm,
where the value of xm (the criterion) depends on the
loss matrix.

How to compare test and ideal observers? The test
observer can perform no better than the ideal and
in general does worse because of suboptimal action
rules, such as systematically failing to use all the
relevant information in the input stimulus. In this
specific example, an observer can be suboptimal by
putting the criterion xm at the wrong place – a
response bias. As the criterion shifts, the values of
the hit and false alarm rates also shift. A graph of
hit versus false alarm rates is known as the ‘receiver
operating characteristic’ (ROC). A key contribution
of signal detection theory was to show that under-
lying human sensitivity to a sensory signal (d0) could
be teased apart from the value of the criterion.
In theory, the ideal and test observers can be com-

pared in terms of their scores (average loss, i.e., pro-
portion of errors) or d0

perf, given the same states and
resulting observations. However, it is often not prac-
tical to directly compare error rates (when the ideal is
making a modest number of mistakes, the test
observer may be near chance and would thus require
too many measurements to estimate d0

perfT
); alterna-

tively, we can compare state parameters in the gener-
ative model that produce identical performances
(e.g., sensitivities d0

perfT
, d0

perfI
for test and ideal in an

equal-variance Gaussian noise-detection task are
determined by the signal-to-noise ratios d0

snrT
and

d0
snrI

). Suppose, for example, that a human and ideal
observer both have the same proportion correct in a
2AFC task; then, the ideal observer can be used as a
benchmark, where a standard measure of com-
parison is statistical efficiency E¼ (Number of sam-
ples required by the ideal observer/Number of
samples required by test observer). In the case of
additive Gaussian noise, this is equivalent to
E ¼ ðd0

snrI
=d0

snrT
Þ2. If the noise is the same, efficiency

takes on the simple form of the ratio of the squared
threshold values of the ideal observer to the human
observer. In the case of detecting an image pattern
in additive Gaussian noise, an observer can be sub-
optimal by failing to use all the image samples (pixels)
or by performing as if there were additional noise.
These two sources of suboptimality have been teased
apart in psychophysical experiments, measured in
terms of calculation (or central) efficiency or trans-
duction efficiency. Efficiency provides a unit-free

measure of performance that allows for the stimulus
complexity and task constraints.

Estimation

Perception is critical to a wide range of tasks, of which
signal detection is just one. Consider the problem of
determining the dimensions of a three-dimensional
object from a two-dimensional projected image. In
this case, a major source of uncertainty results from
the loss of information due to projection. Figure 3
illustrates a Bayesian ideal observermodel for a simple
task to estimate the height and slant of a class of
elliptical disks. Given an elliptical shape on the retina,
what object could have produced it? It could be an
elliptical disk, but a flat circular disk could also pro-
duce an elliptical image.

The generative model For simplicity, assume that the
world consists of elliptical disks of width equal to 1 but
with various heights h. These disks can have various
slants, a, with respect to a viewer. The states are con-
tinuous and can be represented by s ¼ ðs1; s2Þ ¼ ðh; aÞ.
We can hypothesize a prior, pðsÞ ¼ pðh; aÞ on these
values. Figure 3 shows the graph of a bivariate Gauss-
ian prior that assumes that the average slant is p/4 and
the average height is 1. If viewed from a far distance,
the width of the projection of any disk from this state
space is a constant value (say, 1); but the height of the
projection depends on both the true height of the disk
and the slant. An observation of the height x of the
retinal image provides data that constrains but, with-
out additional information, does not uniquely deter-
mine the possible states. In the signal-detection
example, uncertainty resulted from added Gaussian
noise; here, althoughwe assume some additionalmeas-
urement noise, the critical uncertainty results from the
property that the surface could be slanted away from
the viewer by various unknown degrees. For a distant
view, the image observation x can be approximated
as x ) h cosðaÞ þ n. Assuming Gaussian noise, this
determines the likelihood function, pðx% hcosðaÞÞ,
where pðnÞ ¼ e%n2=2s2=ðs

ffiffiffiffiffiffi
2p

p
Þ is the standard

formula for a Gaussian distribution with 0 mean.

The task Given an observation, say x¼ 1/2, the
ideal observer needs to determine the height and
slant with the least risk. Figure 3 illustrates the
steps. It first computes the likelihood of the observa-
tion for all possible values of the state variables. The
likelihood has a high ridge of constant height, mean-
ing that there are infinitely many pairs of height and
slant values that are equally likely. Thus, for example,
a height of 4 inclined at 83* is no less likely than a
head-on slant of 0 together with a height of 1/2.
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This ambiguity can be resolved by multiplying the
likelihood by the prior distribution to obtain the pos-
terior distribution, pðh; ajxÞ. At this point, we could
stop and pick off the peak values of the posterior as
the most probable values of height and slant. This
corresponds to the decision rule for the MAP
observer. However, suppose the task is more complex,
requiring greater precision, say, in estimating the
slant than the height.

The optimal decision rule In this more general case,
we use a rule that minimizes risk. A simple model of
risk is to define loss in terms of the absolute values of
the errors, that is, the difference between the true and
estimated state variables. We then assign a uniformly
low loss to errors of height that fall within a wide
range, but penalize slant errors more narrowly, as
shown by the loss function in Figure 3. The risk is
then a convolution of the loss function with the pos-
terior, Rðh; ajxÞ ¼

Ð
pðh0; a0jxÞLðh% h0; a% a0Þdh0da0,

and the decision rule is to pick the pair of state
variables corresponding to the lowest values of R. It
is straightforward to show that if the tolerance to
errors in height and slant are infinitely wide and nar-
row, respectively, then height effectively drops out
of the risk, and minimizing risk corresponds to the
MAP estimation on the marginal posterior, pðajxÞ.

How to compare test and ideal observers? Even if
human observer estimates differ in detail from an
ideal observer model, we can still test the degree to
which information is optimally combined. Consider
the posterior term, which is proportional to the
product of the likelihood and prior terms. The ideal
observer combines the image cues and the prior infor-
mation in such a way as to take into account the
reliability of each of the sources. Thus, smaller vari-
ances on the prior bias the final estimate toward the
prior means, and, conversely, highly reliable (e.g.,
noise-free) image data move the estimates of slant
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Figure 3 Example of ideal observer theory applied to object perception; a Bayesian ideal observer model for estimating the height and
slant of a class of elliptical disks.
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and/or height toward values consistent with the
data. Task differences also affect shifts in the optimal
estimates of the state variables. Although this
example illustrates the balance between the prior
and likelihood, there is a similar trade-off in the
case of cue integration. For example, if there is
additional information for the slant of the surface
(e.g., a texture gradient), then the ideal observer
combines and weights the cues according to their
reliabilities. For the case of conditional independence
and Gaussian noise, the optimal cue weighting is
given by sopt ¼ ðs1r1Þ=ðr1 þ r2Þ½ ' þ ðs2r2Þ=ðr1 þ r2Þ½ ',
where si is the estimate of the state variable from
cue i, and ri is the reciprocal of the variance for
that cue.

Related Areas

Ideal observer theory has close connections to several
other areas of neuroscience and cognitive science.
Optimal control theory has a similar structure to
that illustrated in Figure 1(a). In applications to
motor control, the state variables change continu-
ously in time and correspond to internal physical
parameters that influence a movement. The Bayes’s
risk function is replaced by a cost function (e.g.,
physical energy of a movement), and the action rule
is replaced by a control law.
Ideal observer analysis can be naturally extended

to optimal learning. Bayes’s optimal learning corre-
sponds to updating the parameters (e.g., mean and
variance) of the posterior distribution as new data
come in. Rather than using the data to infer the causes
or states of the generative model, we use Bayes’
rule to learn the values of the parameters that deter-
mine the posterior.
Computational techniques such as expectation

maximization (EM) and Bayesian belief propagation,
have provided the means to deal with more compli-
cated and non-Gaussian generative models, with
applications to inference and learning. Future
work should produce a growing number of applica-
tions to the experimental study of cognitive and neu-
ral processes.
Comparisons of ideal and human perceptual

behavior inevitably lead to the question of the nature
of the underlying neural mechanisms that might
support ideal-like computation. One of the central

issues is how information about uncertainty may be
represented and processed in the nervous system.

See also: Active Perception; Bayesian Cortical Models;
Bayesian Models of Motor Control; Decision-Making and
Vision; Human Methods: Psychophysics; Motor
Psychophysics; Neural Integrator Models; Psychophysics
of Attention; Statistical Analysis of Visual Perception.
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